Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 19(1): 44, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31973756

ABSTRACT

BACKGROUND: With the fight against malaria reportedly stalling there is an urgent demand for alternative and sustainable control measures. As the sterile insect technique (SIT) edges closer to becoming a viable complementary tool in mosquito control, it will be necessary to find standardized techniques of assessing male quality throughout the production system and post-irradiation handling. Flight ability is known to be a direct marker of insect quality. A new version of the reference International Atomic Energy Agency/Food and Agricultural Organization (IAEA/FAO) flight test device (FTD), modified to measure the flight ability and in turn quality of male Anopheles arabiensis within a 2-h period via a series of verification experiments is presented. METHODS: Anopheles arabiensis juveniles were mass reared in a rack and tray system. 7500 male pupae were sexed under a stereomicroscope (2500 per treatment). Stress treatments included irradiation (with 50, 90, 120 or 160 Gy, using a Gammacell 220), chilling (at 0, 4, 8 and 10 °C) and compaction weight (5, 15, 25, and 50 g). Controls did not undergo any stress treatment. Three days post-emergence, adult males were subjected to either chilling or compaction (or were previously irradiated at pupal stage), after which two repeats (100 males) from each treatment and control group were placed in a FTD to measure flight ability. Additionally, one male was caged with 10 virgin females for 4 days to assess mating capacity (five repeats). Survival was monitored daily for a period of 15 days on remaining adults (two repeats). RESULTS: Flight ability results accurately predicted male quality following irradiation, with the first significant difference occurring at an irradiation dose of 90 Gy, a result which was reflected in both survival and insemination rates. A weight of 5 g or more significantly reduced flight ability and insemination rate, with survival appearing less sensitive and not significantly impacted until a weight of 15 g was imposed. Flight ability was significantly reduced after treatments at 4 °C with the insemination rate more sensitive to chilling with survival again less sensitive (8 and 0 °C, respectively). CONCLUSIONS: The reported results conclude that the output of a short flight ability test, adapted from the previously tested Aedes FTD, is an accurate indicator of male mosquito quality and could be a useful tool for the development of the SIT against An. arabiensis.


Subject(s)
Anopheles/physiology , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors/physiology , Animals , Anopheles/radiation effects , Cold Temperature , Dose-Response Relationship, Radiation , Female , Flight, Animal/radiation effects , Gamma Rays , Malaria/transmission , Male , Mosquito Vectors/radiation effects , Sexual Behavior, Animal/radiation effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...